Volume 2, Issue 5, October 2017, Page: 64-71
Use of Expanded Polystyrene Technology and Materials Recycling for Building Construction in Kenya
Hannah Nyambara Ngugi, Pan African University, Institute for Basic Sciences Technology and Innovations, Nairobi, Kenya
James Wambua Kaluli, School of Biosystems and Environmental Engineering, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
Zachary Abiero-Gariy, Department of Civil, Construction and Environmental Engineering, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
Received: Sep. 15, 2017;       Accepted: Oct. 8, 2017;       Published: Nov. 3, 2017
DOI: 10.11648/j.ajetm.20170205.12      View  2302      Downloads  525
A growing population in Kenya demands expansion of housing facilities. Traditional burnt bricks, quarry stones, timber, and corrugated iron sheets remain the most commonly used construction materials in Kenya. Expanded Polystyrene (EPS) material derived from the distillation process of crude oil and is 100% recyclable, is an alternative construction material. Use of EPS material reduces the rate at which natural materials such as wood and stones are extracted from the environment, hence promoting sustainable development. EPS buildings are fast to construct, cost saving and have thermal characteristics that are suitable for areas with extreme weather conditions. Structurally, EPS materials have performed well for both low and high-rise buildings of up to ten floors. In Kenya, lack of governing standards and unawareness amongst industry players has hampered adaptability of EPS building materials. This paper discusses the potential of EPS as a construction material in Kenya. It is concluded that Kenya needs to develop strategies to promote use of environmentally friendly EPS materials.
Expanded Polystyrene (EPS), Building Technology, Recycling, Sustainable Material
To cite this article
Hannah Nyambara Ngugi, James Wambua Kaluli, Zachary Abiero-Gariy, Use of Expanded Polystyrene Technology and Materials Recycling for Building Construction in Kenya, American Journal of Engineering and Technology Management. Vol. 2, No. 5, 2017, pp. 64-71. doi: 10.11648/j.ajetm.20170205.12
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
A. N. Ede, V. Alegiuno and P. Oluwa, “Use of Advanced Plastic Materials in Nigeria: Performance Assessment of Expanded Polystyrene Building Technology System.,” American Journal of Engineering Research (AJER), vol. 03, no. 04, pp. 301-308, 2014.
Nairobi Couty Government, Nairobi County Government Development Plan, Nairobi, 2014.
L. K. Githuku, “Use of Expanded Polystyrene as a Solution to Low Cost Housing in Kenya.,” Nairobi, 2014.
A. N. Ede, “Measures to Reduce the High Incidence of Structural Failures in Nigeria..,” Journal of Sustainable Development in Africa., vol. 13, no. 1, pp. 153-166, 2011.
K. Sneha and T. P. Tezeswi, “A Comparative Study of Construction Using Schnell Concrewall® Pre-Cast Sandwich Composite Panel and RC Moment Frame with Brick Infill.,” International Journal of Civil Engineering and Technology (IJCIET), vol. 7, no. 5, pp. 110-110, July-August 2016.
R. Raj, M. K. Nayak, M. A. Akbari and P. Saha, “Prospects of Expanded Polystyrene Sheet as Green Building Material.,” International Journal of Civil Engineering Research. Volume 5, Number 2 (2014, vol. 5, no. 2, pp. 145-150, 2014.
O. Medne, “Research on Expanded Polystyrene Product Manufacturing Process,” Riga Technical University, Riga, 2011.
M. X. Calbureanu, E. Albota, D. Tut, D. Tutunea, S. Dumitru, R. Malciu and A. Dima, “Contributions above the dew-point problem in civil building EPS insulated walls modelling with finite element the convective heat transfer.,” International Journal of Mechanics., vol. 4, no. 3, pp. 53-62, 2010.
W. H. Mosley, J. H. Bungey and H. Ray, Reinforced Concrete Design, 5th Edition ed., 1999.
P. Mesaros, M. Spisakova, L. Kyjakova and T. Mandicak, “Expanded polystyrene as the bearing building material of low energy construction.,” in IOP Conference Series: Materials Science and Engineering, TSU, 2015.
J. A. Lee, H. Kelly, A. Rosenfeld, E. Stubee, J. Colaco, A. Gadgil, H. Akbari, L. Norford and H. V. Burik, “Affordable, safe housing based on expanded polystyrene (EPS) foam and a cementitious coating.,” Springer, J Mater Sci 41, p. 6908–6916, 2006.
A. N. Ede and A. Ogundiran, “Thermal Behaviour and Admissible Compressive Strength of Expanded Polystyrene Wall Panels of Varying Thickness,” Current Trends in Technology and Science, vol. 3, no. 2, pp. 110 -117, 2014.
N. H. Corporation, “National Housing Corporation EPS Factory in Athi River,” National Housing Corporation, Nairobi, Kenya, 2015.
L. G. Kageni, “Use of Expanded Polysterene as a Solution to Low Cost Housing in Kenya,” University of Nairobi, Nairobi, 2014.
E. P. Group, “EPS Packaging Group,” EPS Packaging Group, 2014.
J. Bolden, T. Abu-Lebdeh and E. Fini, “Utilization of Recycled and Waste Materials in Various Construction Applications.,” American Journal of Environmental Science, vol. 9, no. 1, pp. 14-24, 2013.
M. Tonosaki, T. Fujii, Y. Hiramatsu, Y. Tsunetsugu and M. Karube, “Present State of Wood Waste Recycling and a New Process for Converting Wood Waste into Reusable Wood Materials,” Special Issue on Environmentally Benign Manufacturing and Material Processes Towards Dematerialisation. The Japan Institute of Metals. Material Transactions., vol. 43, no. 3, pp. 332-339, 2002.
P. V. Khole and M. V. Mohod, “Application of Smart Materials in Civil Engineering for Better Tomorrows: A Review,” International Journal of Engineering Research, vol. 5, no. Special 3, pp. 665-668, 2016.
D. Kralj¹ and M. MariČ, “Building Materials Reuse and Recycle,” WSEAS Transactions on Environment and Development, vol. 4, no. 5, April 2008.
T. R. Sonawane and. S. S. Pimplikar, “Use of Recycled Aggregate Concrete,” IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), pp. 52-59, 2015.
T. U. Ganiron Jr, “Recycling Concrete Debris from Construction and Demolition Waste,” International Journal of Advanced Science and Technology, vol. 11, pp. 7-24, 2015.
C. Klaus, “EPS Recycling Technology,” EPC Engineering Consulting GmbH, Germany, 2014.
J. Abimaje and A. N. Baba, “An Assessment of Timber as a Sustainable Building material in Nigeria.,” International Journal of Civil Engineering, Construction and Estate Management, vol. 1, no. 2, pp. 39-46, September 2014.
A. Mwasha, “Dissolved EPS Wastes as Wood Adhesive,” Advance Recycling Waste Management (ARWM) an open access journal, vol. 1, no. 1, pp. 1-8, 2016.
I. M. Nassar, K. I. Kabel and L. M. Ibrahim, “Evaluation of the Effect of Waste Polystyrene on Performance of Asphalt Binder.,” ARPN Journal of Science and Technology., vol. 2, no. 10, pp. 927-936, January 2012.
N. T. Rocco, “Characterization of expanded polystyrene (EPS) and cohesive soil mixtures.,” Missouri, 2012.
A. N. Ede, “Acceptability of Plastic Materials for Structural Applications in Nigerian Buildings,” International Journal of Innovative Research in Advanced Engineering (IJIRAE), vol. 2, no. 3, March 2015.
D. Ibrahim, O. Bankole, S. A. Ma’aji and E. Ohize, “Assessment of The Strength Properties of Polystyrene Material Used in Building Construction in Mbora District of Abuja, Nigeria.,” International Journal of Engineering Research and Development., vol. 6, no. 12, pp. 80-84, May 2013.
H. L. Riad, A. L. Ricci, P. W. Osborn and J. S. Horvath, “Expanded Polystyrene (EPS) Geofoam for Road Embankments and Other Lightweight Fills in Urban Environments.,” in Soil and Rock America 2003 - 12th Panamerican Conference on Soil Mechanics and Geotechnical Engineering/39th U. S. Rock Mechanics Symposium Cambridge, 22-26 June 2003, Massachusetts, U. S. A., 2003.
Browse journals by subject